如图,已知E是平行四边形ABCD对角线AC上的点,连接DE.
(1)过点B在平行四边形内部作射线BF交AC于点F,且使∠CBF=∠ADE(要求:用尺规作图,保留作图痕迹,不写作法与证明)
(2)连接BE,DF,判断四边形BFDE的形状并证明.
如图,四边形ABCD为矩形,E为BC边中点,连接AE,以AD为直径的⊙O交AE于点F,连接CF.
(1)求证:CF与⊙O相切;
(2)若AD=2,F为AE的中点,求AB的长.
如图,在△ABC中,以AB为直径的⊙O交AC于点D,过点D作DE⊥BC于点E,且∠BDE=∠A.
(1)判断DE与⊙O的位置关系,并说明理由;
(2)若AC=16,tanA=,求⊙O的半径.
(·辽宁锦州)如图①,∠QPN的顶点P在正方形ABCD两条对角线的交点处,∠QPN=α,将∠QPN绕点P旋转,旋转过程中∠QPN的两边分别与正方形ABCD的边AD和CD交于点E和点F(点F与点C,D不重合).
(1)如图①,当α=90°时,DE,DF,AD之间满足的数量关系是 ;
(2)如图②,将图①中的正方形ABCD改为∠ADC=120°的菱形,其他条件不变,当α=60°时,(1)中的结论变为DE+DF=AD,请给出证明;
(3)在(2)的条件下,若旋转过程中∠QPN的边PQ与射线AD交于点E,其他条件不变,探究在整个运动变化过程中,DE,DF,AD之间满足的数量关系,直接写出结论,不用加以证明.
(·辽宁锦州)如图,△ABC中,点D,E分别是边BC,AC的中点,连接DE,AD,点F在BA的延长线上,且AF=AB,连接EF,判断四边形ADEF的形状,并加以证明.
(·吉林长春)如图,在等边中,
于点
,点
在边
上运动,过点
作
与边
交于点
,连结
,以
为邻边作□
,设□
与
重叠部分图形的面积为
,线段
的长为
(1)求线段的长(用含
的代数式表示);
(2)当四边形为菱形时,求
的值;
(3)求与
之间的函数关系式;
(4)设点关于直线
的对称点为点
,当线段
的垂直平分线与直线
相交时,设其交点为
,当点
与点
位于直线
同侧(不包括点
在直线
上)时,直接写出
的取值范围.