已知动圆与圆
相切,且与圆
相内切,记圆心
的轨迹为曲线
;设
为曲线
上的一个不在
轴上的动点,
为坐标原点,过点
作
的平行线交曲线
于
两个不同的点.
(1)求曲线的方程;
(2)试探究和
的比值能否为一个常数?若能,求出这个常数,若不能,请说明理由;
(3)记的面积为
,求
的最大值.
设定义在R上的函数 满足:对于任意的x 1、x 2∈R,当 时,都有 .
(1)若 ,求a的取值范围;
(2)若 是周期函数,证明: 是常值函数;
(3)设 恒大于零, 是定义在R上的、恒大于零的周期函数,M是 的最大值.函数 .证明:" 是周期函数"的充要条件是" 是常值函数".
在平面直角坐标系xOy中,已知椭圆Γ: ,A为Γ的上顶点,P为Γ上异于上、下顶点的动点,M为x正半轴上的动点.
(1)若P在第一象限,且|OP|= ,求P的坐标;
(2)设P ,若以A、P、M为顶点的三角形是直角三角形,求M的横坐标;
(3)若 ,直线AQ与Γ交于另一点C,且 , ,求直线AQ的方程.
根据预测,某地第n(n∈N *)个月共享单车的投放量和损失量分别为 和 (单位:辆),其中 , ,第n个月底的共享单车的保有量是前n个月的累计投放量与累计损失量的差.
(1)求该地区第4个月底的共享单车的保有量;
(2)已知该地共享单车停放点第n个月底的单车容纳量 (单位:辆).设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?
已知函数 .
(1)求 的单调递增区间;
(2)设△ABC为锐角三角形,角A所对边 ,角B所对边b=5,若 ,求△ABC的面积.
如图,直三棱柱ABC﹣A 1B 1C 1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱 的长为5.
(1)求三棱柱ABC﹣A 1B 1C 1的体积;
(2)设M是BC中点,求直线A 1M与平面ABC所成角的大小.