许多家庭以燃气作为烧水做饭的燃料,节约用气是我们日常生活中非常现实的问题.某款燃气灶旋转位置从0度到90度(如图),燃气关闭时,燃气灶旋转的位置为0度,旋转角度越大,燃气流量越大,燃气开到最大时,旋转角度为90度.为测试燃气灶旋转在不同位置上的燃气用量,在相同条件下,选择燃气灶旋钮的5个不同位置上分别烧开一壶水(当旋钮角度太小时,其火力不能够将水烧开,故选择旋钮角度x度的范围是18≤x≤90),记录相关数据得到下表:
旋钮角度(度) |
20 |
50 |
70 |
80 |
90 |
所用燃气量(升) |
73 |
67 |
83 |
97 |
115 |
(1)请你从所学习过的一次函数、反比例函数和二次函数中确定哪种函数能表示所用燃气量y升与旋钮角度x度的变化规律?说明确定是这种函数而不是其它函数的理由,并求出它的解析式;
(2)当旋钮角度为多少时,烧开一壶水所用燃气量最少?最少是多少?
(3)某家庭使用此款燃气灶,以前习惯把燃气开到最大,现采用最节省燃气的旋钮角度,每月平均能节约燃气10立方米,求该家庭以前每月的平均燃气量.
如图,在△ ABC中, BD、 CE分别是 AC、 AB上的中线, BD与 CE相交于点 O.
(1)利用尺规作图取线段 CO的中点.(保留作图痕迹,不写作法);
(2)猜想 CO与 OE的长度有什么关系,并说明理由.
如图,有四张背面完全相同的纸牌 A、 B、 C、 D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.
(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;
(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用 A、 B、 C、 D表示).
如图,海中有一个小岛 A,它周围8海里内有暗礁.渔船跟踪鱼群由西向东航行,在 B点测得小岛 A在北偏东60°方向上,航行10海里到达 C点,这时测得小岛 A在北偏东30°方向上.如果渔船不改变航线继续向东航行,有没有触礁的危险?
已知,如图,抛物线 y= ax 2+ bx+ c( a≠0)的顶点为 M(1,9),经过抛物线上的两点 A(﹣3,﹣7)和 B(3, m)的直线交抛物线的对称轴于点 C.
(1)求抛物线的解析式和直线 AB的解析式.
(2)在抛物线上 A、 M两点之间的部分(不包含 A、 M两点),是否存在点 D,使得 S △ DAC=2 S △ DCM?若存在,求出点 D的坐标;若不存在,请说明理由.
(3)若点 P在抛物线上,点 Q在 x轴上,当以点 A, M, P, Q为顶点的四边形是平行四边形时,直接写出满足条件的点 P的坐标.
如图,点 P是正方形 ABCD内的一点,连接 CP,将线段 CP绕点 C顺时针旋转90°,得到线段 CQ,连接 BP, DQ.
(1)如图1,求证:△ BCP≌△ DCQ;
(2)如图,延长 BP交直线 DQ于点 E.
①如图2,求证: BE⊥ DQ;
②如图3,若△ BCP为等边三角形,判断△ DEP的形状,并说明理由.