许多家庭以燃气作为烧水做饭的燃料,节约用气是我们日常生活中非常现实的问题.某款燃气灶旋转位置从0度到90度(如图),燃气关闭时,燃气灶旋转的位置为0度,旋转角度越大,燃气流量越大,燃气开到最大时,旋转角度为90度.为测试燃气灶旋转在不同位置上的燃气用量,在相同条件下,选择燃气灶旋钮的5个不同位置上分别烧开一壶水(当旋钮角度太小时,其火力不能够将水烧开,故选择旋钮角度x度的范围是18≤x≤90),记录相关数据得到下表:
旋钮角度(度) |
20 |
50 |
70 |
80 |
90 |
所用燃气量(升) |
73 |
67 |
83 |
97 |
115 |
(1)请你从所学习过的一次函数、反比例函数和二次函数中确定哪种函数能表示所用燃气量y升与旋钮角度x度的变化规律?说明确定是这种函数而不是其它函数的理由,并求出它的解析式;
(2)当旋钮角度为多少时,烧开一壶水所用燃气量最少?最少是多少?
(3)某家庭使用此款燃气灶,以前习惯把燃气开到最大,现采用最节省燃气的旋钮角度,每月平均能节约燃气10立方米,求该家庭以前每月的平均燃气量.
如图,在中,
是
边上的一点,
是
的中点,过点
作
的平行线交
的延长线于
,且
,连接
.
(1)求证:是
的中点;
(2)如果,试猜测四边形
的形状,并证明你的结论.
王大伯几年前承办了甲、乙两片荒山,各栽100棵杨梅树,成活98%,现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如拆线统计图所示.
(1)分别计算甲、乙两山样本的平均数,并估算出甲乙两山杨梅的产量总和;
(2)试通过计算说明,哪个山上的杨梅产量较稳定?
如图,矩形ABCD中,对角线AC、BD交于点O,DE∥OC,CE∥OD,试判断四边形OCDE是何特殊四边形,并加以证明。
已知:如图,四边形ABCD是平行四边形,△ADE和△BCF都是等边三角形.求证:BD和EF互相平分.
先将化简,然后选取一个你喜欢的a的值,代入求值.