已知,设p:函数
在(0,+∞)上单调递减,
q:曲线y=x2+(2a 3)x+1与x轴交于不同的两点.若“p且q”为假,“﹁q”为假,求a的取值范围.
(本小题满分12分)
在中,
分别是角A、B、C的对边,且
(1)求角B的大小;
(2)若,求
的面积.
已知数列{an}的前n项和,
(1)求数列{an}的通项公式;
(2)求前n项和的最大值,并求出相应的
的值.
(本小题满分12分)
在△ABC中,已知,c=1,
,求A ,C, a.
已知是定义在
上的奇函数,当
时,
(1)求的解析式;
(2)是否存在负实数,使得当
的最小值是4?如果存在,求出
的值;如果不存在,请说明理由.
(3)对如果函数
的图像在函数
的图像的下方,则称函数
在D上被函数
覆盖.求证:若
时,函数
在区间
上被函数
覆盖.
为了保护环境,某工厂在政府部门的支持下,进行技术改进: 把二氧化碳转化为某种化工产品,经测算,该处理成本(万元)与处理量
(吨)之间的函数关系可近似地表示为:
, 且每处理一吨二氧化碳可得价值为
万元的某种化工产品.
(Ⅰ)当时,判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元,该工厂才不亏损?
(Ⅱ) 当处理量为多少吨时,每吨的平均处理成本最少.