游客
题文

已知函数
(1)讨论函数的单调性;
(2)设,证明:对任意

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

2002年在北京召开的国际数学家大会,会标是以我国古代数学家赵爽
的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形
拼成的一个大正方形(如图).如果小正方形的面积为1,大正方形的
面积为25,直角三角形中较小的锐角为,那么的值等于

选修4—4:坐标系与参数方程
已知曲线C的极坐标方程为,曲线C2的极坐标方程为,曲线C1,C2相交于点A,B。
(1)将曲线C1,C2的极坐标方程化为直角坐标方程;
(2)求弦AB的长。

选修4-1:几何证明选讲
如图,圆O的直径AB=10,弦DE⊥AB于点H,AH=2。
(1)求DE的长;
(2)延长ED到P,过P作圆O的切线,切点为C,若PC=2,求PD的长。

(本小题满分12分)
已知函数
(1)当时,求曲线在点处的切线方程;
(2)当时,讨论的单调性

(本小题满分12分)
为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层。某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元。该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=若不建隔热层,每年能源消耗费用为8万元。设为隔热层建造费用与20年的能源消耗费用之和。
(1)求的值及的表达式。
(2)隔热层修建多厚时,总费用达到最小,并求最小值。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号