游客
题文

某水产养殖场拟造一个无盖的长方体水产养殖网箱,为了避免混养,箱中要安装一些筛网,其平面图如下,如果网箱四周网衣(图中实线部分)建造单价为每米56元,筛网(图中虚线部分)的建造单价为每米48元,网箱底面面积为160平方米,建造单价为每平方米50元,网衣及筛网的厚度忽略不计.
(1)把建造网箱的总造价y(元)表示为网箱的长x(米)的函数,并求出最低造价;
(2)若要求网箱的长不超过15米,宽不超过12米,则当网箱的长和宽各为多少米时,可使总造价最低?(结果精确到0.01米)

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

已知点为圆上的动点,且不在轴上,轴,垂足为,线段中点的轨迹为曲线,过定点任作一条与轴不垂直的直线,它与曲线交于两点。
(I)求曲线的方程;
(II)试证明:在轴上存在定点,使得总能被轴平分

设函数
(I)求的单调区间;
(II)当0<a<2时,求函数在区间上的最小值.

为了解高中一年级学生身高情况,某校按10%的比例对全校700名高中一年级学生按性别进行抽样检查,测得身高频数分布表如下表1、表2.
表1:男生身高频数分布表

身高(cm)
[160,165)
[165,170)
[170,175)
[175,180)
[180,185)
[185,190)
频数
2
5
14
13
4
2


表2:女生身高频数分布表

身高(cm)
[150,155)
[155,160)
[160,165)
[165,170)
[170,175)
[175,180)
频数
1
7
12
6
3
1


(I)求该校男生的人数并完成下面频率分布直方图;

(II)估计该校学生身高在的概率;
(III)从样本中身高在180190cm之间的男生中任选2人,求至少有1人身高在185190cm之间的概率。

在边长为的正方形ABCD中,E、F分别为BC、CD的中点,M、N分别为AB、CF的中点,现沿AE、AF、EF折叠,使B、C、D三点重合,构成一个三棱锥.
(I)判别MN与平面AEF的位置关系,并给出证明;
(II)求多面体E-AFMN的体积.

已知函数),相邻两条对称轴之间的距离等于
(Ⅰ)求的值;
(Ⅱ)当时,求函数的最大值和最小值及相应的x值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号