游客
题文

设平面向量,函数
(1)当时,求函数的取值范围;
(2)当,且时,求的值.

科目 数学   题型 解答题   难度 中等
知识点: 多面角及多面角的性质
登录免费查看答案和解析
相关试题

已知向量 a = cosx sinx b = 3 ,﹣ 3 ), x [ 0 π ]

(Ⅰ)若 a b ,求x的值;

(Ⅱ)记 f x = a b ,求 f x 的最大值和最小值以及对应的x的值.

如图,在三棱锥 A BCD 中, AB AD BC BD ,平面 ABD 平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且 EF AD

求证:(Ⅰ)EF∥平面ABC;

(Ⅱ) AD AC

image.png

[选修4-5:不等式选讲]

已知函数 f x = x 2 + ax + 4 g ( x ) = │x + 1 + │x– 1 .

(1)当 a = 1 时,求不等式 f x g x 的解集;

(2)若不等式 f x g x 的解集包含 [ 1 1 ] ,求 a的取值范围.

[选修4―4:坐标系与参数方程]

在直角坐标系 xOy 中,曲线 C的参数方程为 x = 3 cos θ , y = sin θ , θ为参数),直线 l的参数方程为

x = a + 4 t , y = 1 - t , t 为参数) .

(1)若 a = - 1 ,求 Cl的交点坐标;

(2)若 C上的点到 l的距离的最大值为 17 ,求a.

已知函数 f x ) = a e 2 x + ( a 2 ) e x x .

(1)讨论 f ( x ) 的单调性;

(2)若 f ( x ) 有两个零点,求 a的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号