已知直四棱柱的底面
为正方形,
,
为棱
的中点.
(1)求证:;
(2)设为
中点,
为棱
上一点,且
,求证:
.
已知函数f(x)=loga(x+1)(a>1),若函数y=g(x)的图象上任意一点P关于原点对称的点Q的轨迹恰好是函数f(x)的图象.
(1)写出函数g(x)的解析式;
(2)当x∈[0,1)时总有f(x)+g(x)≥m成立,求m的取值范围.
如图,四棱锥P-ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点.
(1)证明:PA∥平面BDE;
(2)求二面角B-DE-C的余弦值.
已知函数的导函数为
,
的图象在点
,
处的切线方程为
,且
,直线
是函数
的图象的一条切线.
(1)求函数的解析式及
的值;
(2)若对于任意
,
恒成立,求实数
的取值范围.
如图,焦距为的椭圆
的两个顶点分别为
和
,且
与n
,
共线.
(1)求椭圆的标准方程;
(2)若直线与椭圆
有两个不同的交点
和
,且原点
总在以
为直径的圆的内部,
求实数的取值范围.
若正数项数列的前
项和为
,首项
,点
,
在曲线
上.
(1)求,
;
(2)求数列的通项公式
;
(3)设,
表示数列
的前项和,若
恒成立,求
及实数
的取值范围.