已知曲线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,曲线的参数方程是:(是参数).(1)将曲线和曲线的方程转化为普通方程;(2)若曲线与曲线相交于两点,求证;(3)设直线交于两点,且(且为常数),过弦的中点作平行于轴的直线交曲线于点,求证:的面积是定值.
设是定义在上函数,且对任意,当时,都有成立.解不等式.
解不等式组.
已知全集,设集合,集合,若,求实数a的取值范围.
对于定义域为的函数,若同时满足下列条件:①在内单调递增或单调递减;②存在区间,使在上的值域为;那么把()叫闭函数,且条件②中的区间为的一个“好区间”. (1)求闭函数的“好区间”; (2)若为闭函数的“好区间”,求、的值; (3)判断函数是否为闭函数?若是闭函数,求实数的取值范围.
已知函数,且. (1)若在区间上有零点,求实数的取值范围; (2)若在上的最大值是2,求实数的的值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号