数列的前n项和为
,存在常数A,B,C,使得
对任意正整数n都成立.
⑴若数列为等差数列,求证:3A B+C=0;
⑵若设
数列
的前n项和为
,求
;
⑶若C=0,是首项为1的等差数列,设
数列
的前2014项和为P,求不超过P的最大整数的值.
(本小题满分14分)
如图,直线与椭圆
交于
两点,记
的面积为
.
(I)求在,
的条件下,
的最大值;
(II)当,
时,求直线
的方程.
(本小题满分14分)
已知数列,其中
是首项为1,公差为1的等差数列;
是公差为
的等差数列;
是公差为
的等差数列(
).
(1)若,求
;
(2)试写出关于
的关系式,并求
的取值范围;
(3)续写已知数列,使得是公差为
的等差数列,……,依次类推,把已知数列推广为无穷数列. 提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论?
(本小题满分14分)
设函数R.
(1)若处取得极值,求常数
的值;
(2)若上为增函数,求
的取值范围.
(本小题满分14分)
如图,在三棱锥中,侧面
与侧面
均为等边三角形,
,
为
中点.
(1)证明:平面
;
(2)求二面角的余弦值.
(本小题满分12分)
从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件:“取出的2件产品都是二等品”的概率
(1)求从该批产品中任取1件是二等品的概率;
(2)若该批产品共10件,从中任意抽取2件,表示取出的2件产品中二等品的件数,求
的分布列.