数列的前n项和为
,存在常数A,B,C,使得
对任意正整数n都成立.
⑴若数列为等差数列,求证:3A B+C=0;
⑵若设
数列
的前n项和为
,求
;
⑶若C=0,是首项为1的等差数列,设
数列
的前2014项和为P,求不超过P的最大整数的值.
以原点为极点,以
轴的正半轴为极轴建立极坐标系,已知曲线
,过点
的直线
的参数方程为
,设直线
与曲线
分别交于
;
(1)写出曲线和直线
的普通方程;
(2)若成等比数列,求
的值.
已知甲、乙、丙等6人 .
(1)这6人同时参加一项活动,必须有人去,去几人自行决定,共有多少种不同的去法?
(2)这6人同时参加6项不同的活动,每项活动限1人参加,其中甲不参加第一项活动,乙不参加第三项活动,共有多少种不同的安排方法?
(3)这6人同时参加4项不同的活动,求每项活动至少有1人参加的概率.
如图,已知抛物线的焦点在抛物线
上.
(Ⅰ)求抛物线的方程及其准线方程;
(Ⅱ)过抛物线上的动点
作抛物线
的两条切线
、
, 切点为
、
.若
、
的斜率乘积为
,且
,求
的取值范围.
已知函数,
.
(Ⅰ)若,求函数
的极值;
(Ⅱ)若函数在
上有极值,求
的取值范围.
如图,在四棱锥P-ABCD中,PA⊥平面ABCD, AB//CD,∠DAB=90°,PA=AD=DC=1,AB=2,M为PB的中点.
(I)证明:MC//平面PAD;
(II)求直线MC与平面PAC所成角的余弦值.