(本小题满分14分)
已知数列,其中
是首项为1,公差为1的等差数列;
是公差为
的等差数列;
是公差为
的等差数列(
).
(1)若,求
;
(2)试写出关于
的关系式,并求
的取值范围;
(3)续写已知数列,使得是公差为
的等差数列,……,依次类推,把已知数列推广为无穷数列. 提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论?
(本小题满分为12分)
某中学研究性学习小组,为了考察高中学生的作文水平与爱看课外书的关系,在本校高三年级随机调查了名学生。调査结果表明:在爱看课外书的
人中有
人作文水平好,另
人作文水平一般;在不爱看课外书的
人中有
人作文水平好,另
人作文水平一般.
(Ⅰ)试根据以上数据建立一个列联表,并运用独立性检验思想,指出有多大把握认为中学生的作文
水平与爱看课外书有关系?
(Ⅱ)将其中某5名爱看课外书且作文水平好的学生分别编号为,某
名爱看
课外书且作文水平一般的学生也分别编号为
,从这两组学生中各任选
人进行学习交流,求被选取的两名学生的编号之和为
的倍数或
的倍数的概率.
附:
临界值表:
![]() |
0. 10 |
0. 05 |
0. 025 |
0.010 |
0. 005 |
0. 001 |
![]() |
2. 706 |
3. 841 |
5. 024 |
6. 635 |
7. 879 |
10. 828 |
解答题(本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤。)
16.(本小题满分为12分)
已知函数和
.
(Ⅰ)设是
的极大值点,
是
的极小值点,求
的最小值;
(Ⅱ)若,且
,求
的值.
(本小题满分14分)
已知函数,当
时,
取得极
小值
.
(1)求,
的值;
(2)设直线,曲线
.若直线
与曲线
同时满足下列两个条件:
①直线与曲线
相切且至少有两个
切点;
②对任意都有
.则称直线
为曲线
的“上夹线”.
试证明:直线是曲线
的“上夹线”.
(3)记,设
是方程
的实数
根,若对于
定义域中任意的
、
,当
,且
时,问是否存在一个最小的正整数
,使得
恒成立,若存在请求出
的值;若不存在请说明理由.
(本小题满分13分)
已知抛物线:
的焦点为
,过点
作直线
交抛物线
于
、
两点;椭圆
的中心在原点,焦点在
轴上,点
是它的一个顶点,且其离心率
.
(1)求椭圆的方程;
(2)经过、
两点分别作抛物线
的切线
、
,切线
与
相交于点
.证明:
;
(3) 椭圆上是否存在一点
,经过点
作抛物线
的两条切线
、
(
、
为切点),使得直线
过点
?若存在,求出抛物线
与切线
、
所围成图形的面积;若不存在,试说明理由
.
执行下面框图所描述的算法程序,记输出的一列数依次为,
,…,
,
,
.
(1)若输入
,写出输出结果;
(2)若输入,求数列
的通项公式;
(3)若输入,令
,求常数
(
),使得
是等比数列.