给定椭圆.称圆心在原点O,半径为
的圆是椭圆C的“准圆”.若椭圆C的一个焦点为
,其短轴上的一个端点到F的距离为
.
(1)求椭圆C的方程和其“准圆”方程;
(2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线,使得
与椭圆C都只有一个交点,试判断
是否垂直?并说明理由.
如图,三棱柱的底面是边长为
的正三角形,侧棱垂直于底面,侧棱长为
,D为棱
的中点。
(Ⅰ)求证:平面
;
(Ⅱ)求二面角的大小.
为了了解某市工厂开展群众体育活动的情况,拟采用分层抽样的方法从三个区中抽取6个工厂进行调查.已知
区中分别有27,18,9个工厂.
(Ⅰ)求从区中应分别抽取的工厂个数;
(Ⅱ)若从抽得的6个工厂中随机地抽取2个进行调查结果的对比,求这2个工厂中至少有1个来自区的概率.
在中,角
,
,
的对边为
,
,
且;
(Ⅰ)求的值;
(Ⅱ)若,
,求
的值.
已知坐标平面内:
,
:
.动点P与
外切与
内切.
(1)求动圆心P的轨迹的方程;
(2)若过D点的斜率为2的直线与曲线交于两点A、B,求AB的长;
(3)过D的动直线与曲线交于A、B两点,线段中点为M,求M的轨迹方程.
设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6, 且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.
(1)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;
(2)记表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求
的分布列及期望.