游客
题文

给定椭圆.称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为,其短轴上的一个端点到F的距离为
(1)求椭圆C的方程和其“准圆”方程;
(2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线,使得与椭圆C都只有一个交点,试判断是否垂直?并说明理由.

科目 数学   题型 解答题   难度 困难
登录免费查看答案和解析
相关试题

已知双曲线C1(a>0),抛物线C2的顶点在原点O,C2的焦点是C1的左焦点F1
(1)求证:C1,C2总有两个不同的交点;
(2)问:是否存在过C2的焦点F1的弦AB,使ΔAOB的面积有最大值或最小值?若存在,求直线AB的方程与SΔAOB的最值,若不存在,说明理由。

如图,已知矩形ABCD中,AB=1,BC=,PA平面ABCD,且PA=1。
(1)问BC边上是否存在点Q,使得PQQD?并说明理由;
(2)若边上有且只有一个点Q,使得PQQD,求这时二面角Q的正切。

已知函数f(x)=的图像在点为自然常数)处的切线斜率为3.
(Ⅰ)求实数的值
(Ⅱ)若,且对任意的恒成立,求得最大值
(Ⅲ)当时,证明

已知函数
(Ⅰ)求的单调区间;
(Ⅱ)若,,求的取值范围.

设函数,且的极值点.
(Ⅰ) 若的极大值点,求的单调区间(用表示);
(Ⅱ)若恰有1解,求实数的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号