(本题共3小题,满分16分。第1小题满分4分,第2小题满分6分,第3小题6分)
设数列的前
项和为
,若对任意的
,有
且
成立.
(1)求、
的值;
(2)求证:数列是等差数列,并写出其通项公式
;
(3)设数列的前
项和为
,令
,若对一切正整数
,总有
,求
的取值范围.
(本题共2小题,满分14分。第1小题满分6分,第2小题满分8分)
提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度
(单位:辆/千米)的函数.当桥上的车流密度达到
辆/千米时,造成堵塞,此时车流速度为
千米/小时;当车流密度不超过
辆/千米时,车流速度为
千米/小时,研究表明;当
时,车流速度
是车流密度
的一次函数.
(1)求函数的表达式;
(2)当车流密度为多大时,车流量(单位时间内通过桥上某一点的车辆数,单位:辆/每小时)
可以达到最大,并求出最大值(精确到1辆/小时).
(本题共2小题,满分14分。第1小题满分7分,第2小题满分7分)
定义:,若已知函数
(
且
)满足
.
(1)解不等式:;
(2)若对于任意正实数
恒成立,求实数
的取值范围.
(本题共2小题,满分12分。第1小题满分6分,第2小题满分6分)
已知复数,
(
),且
.
(1)设=
,求
的最小正周期和单调递增区间.
(2)当时,求函数
的值域.
已知函数
⑴试就实数的不同取值,写出该函数的单调递增区间;
⑵已知当时,函数在
上单调递减,在
上单调递增,求
的值并写出函数的解析式;
⑶若函数在区间
内有反函数,试求出实数
的取值范围。