在平面直角坐标系中,原点为
,抛物线
的方程为
,线段
是抛物线
的一条动弦.
(1)求抛物线的准线方程和焦点坐标
;
(2)若,求证:直线
恒过定点;
(3)当时,设圆
,若存在且仅存在两条动弦
,满足直线
与圆
相切,求半径
的取值范围?
某市2010年4月1日-4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):
61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,
77,86,81,83,82,82,64,79,86,85,75,71,49,45,
(Ⅰ)完成频率分布表;
(Ⅱ)作出频率分布直方图;
(Ⅲ)根据国家标准,污染指数在0~50之间时,空气质量为优:在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染。
请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.
椭圆
经过点
,对称轴为坐标轴,焦点
在
轴上,离心率
。
(Ⅰ)求椭圆
的方程;
(Ⅱ)求
的角平分线所在直线
的方程.
的面积是30,内角
所对边长分别为
,
.
(Ⅰ)求
;
(Ⅱ)若
,求
的值.
已知
为半圆
(
为参数,
)上的点,点
的坐标为(1,0),
为坐标原点,点
在射线
上,线段
与
的弧
的长度均为
.
(Ⅰ)以
为极点,
轴的正半轴为极轴建立极坐标系,求点
的坐标;
(Ⅱ)求直线
的参数方程
设
,
分别为椭圆
的左右焦点,过
的直线
与椭圆
相交于
,
两点,直线
的倾斜角为
,
到直线
的距离为
.
(Ⅰ)求椭圆
的焦距;
(Ⅱ)如果
,求椭圆
的方程。