已知,点
依次满足
。
(1)求点的轨迹;
(2)过点作直线
交以
为焦点的椭圆于
两点,线段
的中点到
轴的距离为
,且直线
与点
的轨迹相切,求该椭圆的方程;
(3)在(2)的条件下,设点的坐标为
,是否存在椭圆上的点
及以
为圆心的一个圆,使得该圆与直线
都相切,如存在,求出
点坐标及圆的方程,如不存在,请说明理由.
某批产品共10件,已知从该批产品中任取1件,则取到的是次品的概率为P=0.2.若从该批产品中任意抽取3件,
(1)求取出的3件产品中恰好有一件次品的概率;
(2)求取出的3件产品中次品的件数X的概率分布列与期望.
如图,曲线Γ:x2+y2=1(x≥0,y≥0)与x轴交于点A,点P在曲线Γ上,∠AOP=α.
(Ⅰ)若点P的坐标是(,
),求cos2
﹣sin2
+2sin
cos
的值;
(Ⅱ)求函数f(α)=sinα+cosα的值域.
袋子A和袋子B均装有红球和白球,从A中摸出一个红球的概率是,从B中摸出一个红球的概率是P.
(1)从A中有放回地摸球,每次摸出一个,共摸5次,求恰好有3次摸到红球的概率;
(2)若A、B两个袋子中的总球数之比为1:2,将A、B中的球装在一起后,从中摸出一个红球的概率为,求P的值.
某热水瓶胆生产的6件产品中,有4件正品,2件次品,正品和次品在外观上没有区别,从这6件产品中任意抽检2件,计算
(1)2件都是正品的概率
(2)至少有一件次品的概率.
甲有一个箱子,里面放有x个红球,y个白球(x,y≥0,且x+y=4);乙有一个箱子,里面放有2个红球,1个白球,1个黄球.现在甲从箱子任取2个球,乙从箱子里在取1个球,若取出的3个球颜色全不相同,则甲获胜.
(1)试问甲如何安排箱子里两种颜色的个数,才能使自己获胜的概率最大?
(2)在(1)的条件下,求取出的3个球中红球个数的数学期望.