游客
题文

已知椭圆的左右焦点分别为,短轴两个端点为,且四边形是边长为2的正方形.
(1)求椭圆的方程;
(2)若分别是椭圆长轴的左右端点,动点满足,连接,交椭圆于点.证明:为定值;
(3)在(2)的条件下,试问轴上是否存在异于点的定点,使得以为直径的圆恒过直线的交点,若存在,求出点的坐标;若不存在,请说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 圆的方程的应用
登录免费查看答案和解析
相关试题

已知椭圆的离心率,A,B分别为椭圆的长轴和短轴的端点,M为AB的中点,O为坐标原点,且.
(1)求椭圆的方程;
(2)过(-1,0)的直线交椭圆于P,Q两点,求△POQ面积最大时直线的方程.

已知圆方程为:
(1)直线过点且与圆交于两点,若,求直线的方程;
(2)过圆上一动点作平行于轴的直线,设轴交点为,若
向量,求动点的轨迹方程.

求过直线与直线的交点,且与点A(0,4)和点B(4,O)距离相等的直线方程.

已知是定义在上的奇函数,且,若时,有成立.
(1)判断上的单调性,并证明;
(2)解不等式:
(3)若当时,对所有的恒成立,求实数的取值范围.

已知函数,若上的最大值为,求的解析式.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号