已知椭圆的左右焦点分别为
,短轴两个端点为
,且四边形
是边长为2的正方形.
(1)求椭圆的方程;
(2)若分别是椭圆长轴的左右端点,动点
满足
,连接
,交椭圆于点
.证明:
为定值;
(3)在(2)的条件下,试问轴上是否存在异于点
的定点
,使得以
为直径的圆恒过直线
的交点,若存在,求出点
的坐标;若不存在,请说明理由.
已知定义在R上的奇函数 满足
,且
时,
,给出下列结论:
①;②函数
在
上是增函数;
③函数的图像关于直线x=1对称;
④若 ,则关于x的方程
在[-8,16]上的所有根之和为12.
则其中正确的命题为_________.
(本小题满分12分)设函数.
(1)若函数在
处有极值,求函数
的最大值;
(2)①是否存在实数,使得关于
的不等式
在
上恒成立?若存在,求出
的取值范围;若不存在,说明理由;
②证明:不等式
(本小题满分12分)设函数(
).
(1)当时,讨论函数
的单调性;
(2)若对任意及任意
,
,恒有
成立,求实数
的取值范围.
(本小题满分12分) 已知函数.
(Ⅰ)函数在
处的切线方程为
,求a、b的值;
(Ⅱ)当时,若曲线
上存在三条斜率为k的切线,求实数k的取值范围.
(本小题满分12分)
已知函数.
(1)若为函数
的极值点,求实数
的值;
(2)若时,方程
有实数根,求实数
的取值范围.