某商店试销某种商品20天,获得如下数据:
日销售量(件) |
0 |
1 |
2 |
3 |
频数 |
1 |
5 |
9 |
5 |
试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存货少于2件,则当天进货补充至3件,否则不进货,将频率视为概率。
(1)求当天商品不进货的概率;
(2)记
为第二天开始营业时该商品的件数,求
的分布列和数学期望。
计算下列定积分
(1)(2)
(本小题满分15分)已知函数的图像过点
,且在该点的切线方程为
.
(Ⅰ)若在
上为单调增函数,求实数
的取值范围;
(Ⅱ)若函数恰好有一个零点,求实数
的取值范围.
(本小题满分15分)
已知椭圆:
(
)的离心率为
,直线
与以原点为圆心、以椭圆
的短半轴长为半径的圆相切.
(1)求椭圆的方程;
(2)设椭圆的左焦点为
,右焦点为
,直线
过点
且垂直于椭圆的长轴,动直线
垂直
于点
,线段
的垂直平分线交
于点
.
(i)求点的轨迹
的方程;
(ii)若为点
的轨迹
的过点
的两条相互垂直的弦,求四边形
面积的最小值.
(本小题满分14分)如图,在底面是矩形的四棱锥中,
平面
,
,
是
的中点.
(1)求与平面
所成的角的正弦值;
(2)若点在线段
上,二面角
所成角为
,
且,求
的值.
(本小题满分14分)已知数列是递增数列,且满足
(Ⅰ)若是等差数列,求数列
的通项公式;
(Ⅱ)对于(Ⅰ)中,令
,求数列
的前
项和
.