“光盘行动”倡导厉行节约,反对铺张浪费,带动大家珍惜粮食,吃光盘子中的食物,得到从中央到民众的支持,为了解某地响应“光盘行动”的实际情况,某校几位同学组成研究性学习小组,从某社区岁的人群中随机抽取n人进行了一次调查,得到如下统计表:
(1)求a,b的值,并估计本社区岁的人群中“光盘族”所占比例;
(2)从年龄段在的“光盘族”中,采用分层抽样方法抽取8人参加节约粮食宣传活动,并从这8人中选取2人作为领队.
(1)已知选取2人中1人来自中的前提下,求另一人来自年龄段
中的概率;
(2)求2名领队的年龄之和的期望值(每个年龄段以中间值计算).
如图,点为圆形纸片内不同于圆心
的定点,动点
在圆周上,将纸片折起,使点
与点
重合,设折痕
交线段
于点
.现将圆形纸片放在平面直角坐标系
中,设圆
:
,记点
的轨迹为曲线
.
⑴证明曲线是椭圆,并写出当
时该椭圆的标准方程;
⑵设直线过点
和椭圆
的上顶点
,点
关于直线
的对称点为点
,若椭圆
的离心率
,求点
的纵坐标的取值范围.
某地建一座桥,两端的桥墩已建好,这两墩相距米,余下工程只需要建两端桥墩之间的桥面和桥墩,经预测,建一个桥墩的工程费用为256万元,距离为
米的相邻两桥墩之间的桥面工程费用为
万元。假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为
万元。
(1)试写出关于
的函数关系式;
(2)当=640米时,需新建多少个桥墩才能使
最小?
如图,在直三棱柱中,
,
分别是
的中点,且
.
(1)求证:;
(2)求证:平面平面
.
设函数.
(1)求的最小正周期.
(2)若函数与
的图像关于直线
对称,求当
时
的最大值.
设数列的前n项和为
,
(1)求证:数列是等比数列;
(2)若,是否存在q的某些取值,使数列
中某一项能表示为另外三项之和?若能求出q的全部取值集合,若不能说明理由。
(3)若,是否存在
,使数列
中,某一项可以表示为另外三项之和?若存在指出q的一个取值,若不存在,说明理由。