某造纸厂拟建一座底面图形为矩形且面积为162平方米的三级污水处理池,池的深度一定(平面图如图所示),如果池四周围墙建造单价为400元/米,中间两道隔墙建造单价为248元/米,池底建造单价为80元/平方米,水池所有墙的厚度忽略不计.
(1)试设计污水处理池的长和宽,使总造价最低,并求出最低总造价;
(2)若由于地形限制,该池的长和宽都不能超过16米,试设计污水处理池的长和宽,使总造价最低,并求出最低总造价.
下表是某单位在2013年1—5月份用水量(单位:百吨)的一组数据:
月份![]() |
1 |
2 |
3 |
4 |
5 |
用水量![]() |
4 5 |
4 |
3 |
2 5 |
1 8 |
(Ⅰ)若由线性回归方程得到的预测数据与实际检验数据的误差不超过0 05,视为“预测可靠”,通过公式得,那么由该单位前4个月的数据中所得到的线性回归方程预测5月份的用水量是否可靠?说明理由;
(Ⅱ)从这5个月中任取2个月的用水量,求所取2个月的用水量之和小于7(单位:百吨)的概率
参考公式:回归直线方程是:,
在中,角
所对的边分别为
,已知
,
(Ⅰ)求的大小;
(Ⅱ)若,求
的取值范围.
设函数.
(Ⅰ)解不等式;
(Ⅱ)若函数的解集为
,求实数
的取值范围.
在极坐标系中,已知圆的圆心
,半径
.
(Ⅰ)求圆的极坐标方程;
(Ⅱ)若,直线
的参数方程为
(
为参数),直线
交圆
于
两点,求弦长
的取值范围.
如图,是圆
的直径,
、
在圆
上,
、
的延长线交直线
于点
、
,
.求证:
(Ⅰ)直线是圆
的切线;
(Ⅱ).