游客
题文

如图,在平面直角坐标系xOy中,已知直线PA是一次函数y=x+m(m>0)的图象,直线PB是一次函数y=-3x+n(n>m)的图象,点P是两直线的交点,点A、B、C、Q分别是两条直线与坐标轴的交点.
(1)用m、n分别表示点A、B、P的坐标及∠PAB的度数;
(2)若四边形PQOB的面积是4,且CQ:AO=2:1,试求点P的坐标,并求出直线PA与PB的函数表达式;
(3)在(2)的条件下,是否存在一点D,使以A、B、P、D为顶点的四边形是平行四边形?若存在,求出点D的坐标;若不存在,请说明理由.

科目 数学   题型 解答题   难度 中等
知识点: 一次函数的最值
登录免费查看答案和解析
相关试题

(年湖南张家界12分)如图,在平面直角坐标系中,O为坐标原点,抛物线过过O、B、C三点,B、C坐标分别为(10,0)和(),以OB为直径的⊙A经过C点,直线l垂直于x轴于点B.

(1)求直线BC的解析;
(2)求抛物线解析式及顶点坐标;
(3)点M是⊙A上一动点(不同于O,B),过点M作⊙A的切线,交y轴于点E,交直线l于点F,设线段ME长为m ,MF长为n,请猜想的值,并证明你的结论;
(4)点P从O出发,以每秒1个单位速度向点B作直线运动,点Q同时从B出发,以相同速度向点C作直线运动,经过t(0<t)秒时恰好使△BPQ为等腰三角形,请求出满足条件的t值.

(2014年湖南岳阳10分)数学活动﹣求重叠部分的面积
(1)问题情境:如图①,将顶角为120°的等腰三角形纸片(纸片足够大)的顶点P与等边△ABC的内心O重合,已知OA=2,则图中重叠部分△PAB的面积为
(2)探究1:在(1)的条件下,将纸片绕P点旋转至如图②所示位置,纸片两边分别与AC,AB交于点E,F,图②中重叠部分的面积与图①重叠部分的面积是否相等?如果相等,请给予证明;如果不相等,请说明理由.
(3)探究2:如图③,若∠CAB=α(0°<α<90°),AD为∠CAB的角平分线,点P在射线AD上,且AP=2,以P为顶点的等腰三角形纸片(纸片足够大)与∠CAB的两边AC,AB分别交于点E、F,∠EPF=180°﹣α,求重叠部分的面积.(用α或的三角函数值表示)

(年湖北黄石10分)如图,在矩形ABCD中,把点D沿AE对折,使点D落在OC上的F点,已知AO=8.AD=10.

(1)求F点的坐标;
(2)如果一条不与抛物线对称轴平行的直线与该抛物线仅有一个交点,我们把这条直线称为抛物线的切线,已知抛物线经过点O,F,且直线y=6x﹣36是该抛物线的切线,求抛物线的解析式;
(3)直线与(2)中的抛物线交于P、Q两点,点B的坐标为(3,),求证:为定值.(参考公式:在平面直角坐标系中,若M(x1,y1),N(x2,y2),则M,N两点间的距离为|MN|=).

(年湖北武汉12分)如图,已知直线AB:与抛物线交于A、B两点,

(1)直线AB总经过一个定点C,请直接写出点C坐标;
(2)当时,在直线AB下方的抛物线上求点P,使△ABP的面积等于5;
(3)若在抛物线上存在定点D使∠ADB=90°,求点D到直线AB的最大距离.

(2014年湖北咸宁12分)如图,正方形OABC的边OA,OC在坐标轴上,点B的坐标为(﹣4,4).点P从点A出发,以每秒1个单位长度的速度沿x轴向点O运动;点Q从点O同时出发,以相同的速度沿x轴的正方向运动,规定点P到达点O时,点Q也停止运动.连接BP,过P点作BP的垂线,与过点Q平行于y轴的直线l相交于点D.BD与y轴交于点E,连接PE.设点P运动的时间为t(s).

(1)∠PBD的度数为 ,点D的坐标为 (用t表示);
(2)当t为何值时,△PBE为等腰三角形?
(3)探索△POE周长是否随时间t的变化而变化?若变化,说明理由;若不变,试求这个定值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号