游客
题文

如图,在平面直角坐标系xOy中,已知直线PA是一次函数y=x+m(m>0)的图象,直线PB是一次函数y=-3x+n(n>m)的图象,点P是两直线的交点,点A、B、C、Q分别是两条直线与坐标轴的交点.
(1)用m、n分别表示点A、B、P的坐标及∠PAB的度数;
(2)若四边形PQOB的面积是4,且CQ:AO=2:1,试求点P的坐标,并求出直线PA与PB的函数表达式;
(3)在(2)的条件下,是否存在一点D,使以A、B、P、D为顶点的四边形是平行四边形?若存在,求出点D的坐标;若不存在,请说明理由.

科目 数学   题型 解答题   难度 中等
知识点: 一次函数的最值
登录免费查看答案和解析
相关试题

大学生李萌同学利用暑假参加社会实践,为某报社推销报纸,订购价格是每份0.7元,销售价是每份1元,卖不掉的报纸由报社发行部以每份0.2元回收,在一个月内(以31天计算)约有20天每天可卖出100份,其余11天每天可卖出60份,但报社发行部要求每天订购的报纸份数必须相同,若每天订购x份为自变量,该月所获得的利润y(元)为x的函数.
(1)写出y与x的函数关系式,并指出x自变量的取值范围。
(2)李萌同学应该每天订购多少份该报纸,才能使该月获得的利润最大?并求出这个最大值。

如图,在边长为2的正方形ABCD的一边BC上,一点P从B点运动到C点,设BP=x,四边形APCD的面积为y.
⑴ 写出y与x之间的函数关系式及x的取值范围;
⑵ 说明是否存在点P,使四边形APCD的面积为1.5?

已知某一次函数自变量x的取值范围是0≤x≤10,函数y的取值范围,10≤y≤30 , 求此函数解析式.

如图,已知直线,直线,直线分别交x轴于B、C两点,相交于点A。
(1)求A、B、C三点坐标;
(2)求△ABC的面积。

已知一次函数图象经过点(3 , 5) , (–4,–9)两点.
(1)求一次函数解析式.
(2)求图象和坐标轴围成三角形面积.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号