(年湖北黄石10分)如图,在矩形ABCD中,把点D沿AE对折,使点D落在OC上的F点,已知AO=8.AD=10.
(1)求F点的坐标;
(2)如果一条不与抛物线对称轴平行的直线与该抛物线仅有一个交点,我们把这条直线称为抛物线的切线,已知抛物线经过点O,F,且直线y=6x﹣36是该抛物线的切线,求抛物线的解析式;
(3)直线与(2)中的抛物线交于P、Q两点,点B的坐标为(3,
),求证:
为定值.(参考公式:在平面直角坐标系中,若M(x1,y1),N(x2,y2),则M,N两点间的距离为|MN|=
).
如图,O为矩形ABCD的对角线的交点,DE∥AC,CE∥BD,
(1)试判断四边形OCED的形状,并说明理由;
(2)若AB=3,BC=4,求四边形OCED的面积。
某公司准备与汽车租赁公司签订租车合同。以每月用车路程x(km)计算,甲汽车租赁公司的月租费元,乙汽车租赁公司的月租费是
元。如果
、
与x之间的关系如图所示。
(1)求、
与x之间的函数关系
(2)每月用车路程在什么范围内,租用甲汽车租赁公司的车所需费用较少?
(10分)某班40名学生的某次数学测验的平均成绩是69分,成绩统计表如下:
成绩 |
50 |
60 |
70 |
80 |
90 |
100 |
人数(人) |
2 |
x |
10 |
y |
4 |
2 |
(1)求x和y的值;
(2)设此班40名学生成绩的众数为,中位数为
,求代数式
的值。
在△ABC中,∠BAC=900,AB=20,AC=15,AD⊥BC,垂足为D,
(1)求BC的长;(2)求AD的长。
已知点A(0,0)、B(3,0),点C在y轴上,且△ABC的面积为5,求点C的坐标。