(本小题满分12分)为了解高一年级学生的基本数学素养,某中学特地组织了一次数学基础知识竞赛,随机抽取统测成绩得到一样本.其分组区间和频数是: ,
;
,
;
,
;
,
; [90,100],
. 其频率分布直方图受到破坏,可见部分如下图所示,据此解答如下问题.
(1)求样本的人数及x的值;
(2)估计样本的众数,并计算频率分布直方图中的矩形的高;
(3)从成绩不低于分的样本中随机选取
人,该
人中成绩在
分以上(含
分)的人数记为
,求
的分布列及其数学期望.
已知向量,
,函数f(x)=
,且y=f(x)的图象过点
和点
.
(1)求m,n的值;
(2)将y=f(x)的图象向左平移φ(0<φ<π)个单位后得到函数y=g(x)的图象,若y=g(x)图象上各最高点到点(0,3)的距离的最小值为1,求y=g(x)的单调递增区间.
选修4—5:不等式选讲
已知,
.
(Ⅰ)解不等式;
(Ⅱ)若不等式恒成立,求a的取值范围.
选修4—4:极坐标与参数方程
已知圆的极坐标方程为:.
(Ⅰ)将极坐标方程化为普通方程;并选择恰当的参数写出它的参数方程;
(Ⅱ)若点在该圆上,求
的最大值和最小值.
(本小题满分12分)已知函数,其中e为自然对数的底数,a为常数.
(1)若对函数存在极小值,且极小值为0,求a的值;
(2)若对任意,不等式
恒成立,求a的取值范围.
(本小题满分12分)在三棱柱ABC-A1B1C1中,AB=BC=CA=AA1=2,侧棱AA1⊥面ABC,D、E分别是棱A1B1、AA1的中点,点F在棱AB上,且.
(Ⅰ)求证:EF∥平面BDC1;
(Ⅱ)求二面角E-BC1-D的余弦值.