在数列 中,
(I)设
,求数列
的通项公式;
(II)求数列
的前
项和
.
已知函数(
为常数).
(1)求函数的最小正周期和单调增区间;
(2)若函数的图像向左平移
个单位后,得到函数
的图像关于
轴对称,求实数
的最小值.
甲乙丙三人商量周末去玩,甲提议去市中心逛街,乙提议去城郊觅秋,丙表示随意。最终,商定以抛硬币的方式决定结果。规则是:由丙抛掷硬币若干次,若正面朝上则甲得一分乙得零分,反面朝上则乙得一分甲得零分,先得4分者获胜,三人均执行胜者的提议.记所需抛币次数为.
⑴求=6的概率;
⑵求的分布列和期望.
已知函数(
).
(Ⅰ)当时,求函数
的极值;
(Ⅱ)若对任意,不等式
恒成立,求实数
的取值范围.
已知椭圆:
的离心率为
,左焦点为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线与曲线
交于不同的
、
两点,且线段
的中点
在圆
上,求
的值.
某校从参加高三模拟考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六组[90,100),[100,110), [140,150)后得到如下部分频率分布直方图.观察图形的信息,回答下列问题.
(Ⅰ)求分数在[120,130)内的频率;
(Ⅱ)若在同一组数据中,将该组区间的中点值(如:组区间[100,110)的中点值为=105)作为这组数据的平均分,据此估计本次考试的平均分;
(Ⅲ)用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[120,130)内的概率.