如图是一个半圆形湖面景点的平面示意图.已知为直径,且
km,
为圆心,
为圆周上靠近
的一点,
为圆周上靠近
的一点,且
∥
.现在准备从
经过
到
建造一条观光路线,其中
到
是圆弧
,
到
是线段
.设
,观光路线总长为
.
(1)求关于
的函数解析式,并指出该函数的定义域;
(2)求观光路线总长的最大值.
如图,已知正四棱柱中,底面边长
,侧棱
的长为4,过点
作
的垂线交侧棱
于点
,交
于点
.
(1)求证:⊥平面
;
(2)求与平面
所成角的正弦值.
已知函数.
(1)求函数的零点,并求反函数
;
(2)设,若不等式
在区间
上恒成立,求实数
的范围.
(本小题满分10分)(选修4—5:不等式选讲)
(Ⅰ)证明柯西不等式:;
(Ⅱ)若且
,用柯西不等式求
+
的最大值.
(本小题满分10分)选修4-4:坐标系与参数方程
将圆上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.
(Ⅰ)写出C的参数方程;
(Ⅱ)设直线与C的交点为
,以坐标原点为极点,x轴正半轴为极坐标建立极坐标系,求过线段
的中点且与
垂直的直线的极坐标方程.
(本小题满分10分)选修4-1:几何证明选讲.
如图,在中,
是
的角平分线,
的外接圆交
于点
,
.
(Ⅰ)求证:;
(Ⅱ)当时,求
的长.