游客
题文

某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:

日期
1月
10日
2月
10日
3月
10日
4月
10日
5月
10日
6月
10日
昼夜温差
x(℃)
10
11
13
12
8
6
就诊人数
y(个)
22
25
29
26
16
12

该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
(1)求选取的2组数据恰好是相邻两个月的概率.
(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程=x+.
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?
(参考公式:==,=-).

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:

旧设备

9.8

10.3

10.0

10.2

9.9

9.8

10.0

10.1

10.2

9.7

新设备

10.1

10.4

10.1

10.0

10.1

10.3

10.6

10.5

10.4

10.5

旧设备和新设备生产产品的该项指标的样本平均数分别记为 x ¯ y ¯ ,样本方差分别记为 S 1 2 S 2 2

(1)求 x ¯ y ¯ S 1 2 S 2 2

(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果 y ̄ - x ̄ 2 S 1 2 + S 2 2 10 ,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).

已知函数 f ( x ) = x - 2 , g ( x ) = 2 x + 3 - 2 x - 1

(1)画出 y = g x 图像;

(2)若 f x + a g x ,求a的取值范围.

在直角坐标系 xOy 中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为 ρ = 2 2 cos θ

(1)将C的极坐标方程化为直角坐标方程;

(2)设点A的直角坐标为 1 , 0 MC上的动点,点P满足 AP = 2 AM ,写出Р的轨迹 C 1 的参数方程,并判断C C 1 是否有公共点.

抛物线C的顶点为坐标原点O.焦点在x轴上,直线l x = 1 CPQ两点,且 OP OQ .已知点 M 2 , 0 ,且 M l相切.

(1)求C M 的方程;

(2)设 A 1 , A 2 , A 3 C上的三个点,直线 A 1 A 2 A 1 A 3 均与 M 相切.判断直线 A 2 A 3 M 的位置关系,并说明理由.

设函数 f ( x ) = a 2 x 2 + ax - 3 ln x + 1 ,其中 a > 0 .

(1)讨论 f x 的单调性;

(2)若的图像与 x 轴没有公共点,求a的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号