已知是复数,
和
均为实数.
(1)求复数;
(2)若复数在复平面内对应点在第一象限,求实数t的取值范围.
若关于的不等式
的解集是
,
的定义域是
,
若,求实数
的取值范围。
若是函数
在点
附近的某个局部范围内的最大(小)值,则称
是函数
的一个极值,
为极值点.已知
,函数
.
(Ⅰ)若,求函数
的极值点;
(Ⅱ)若不等式恒成立,求
的取值范围.
(为自然对数的底数)
如图,已知抛物线的焦点在抛物线
上,点
是抛物线
上的动点.
(Ⅰ)求抛物线的方程及其准线方程;
(Ⅱ)过点作抛物线
的两条切线,
、
分别为两个切点,设点
到直线
的距离为
,求
的最小值.
如图,在△中,
,
,点
在
上,
交
于
,
交
于
.沿
将△
翻折成△
,使平面
平面
;沿
将△
翻折成△
,使平面
平面
.
(Ⅰ)求证:平面
.
(Ⅱ)设,当
为何值时,二面角
的大小为
?
一个袋中装有大小相同的黑球和白球共9个,从中任取3个球,记随机变量为取出3球中白球的个数,已知
.
(Ⅰ)求袋中白球的个数;
(Ⅱ)求随机变量的分布列及其数学期望.