已知函数f(x)=alnx+bx2图象上点P(1,f(1))处的切线方程为2x-y-3=0.
(1)求函数y=f(x)的解析式;
(2)函数g(x)=f(x)+m-ln4,若方程g(x)=0在[,2]上恰有两解,求实数m的取值范围.
已知二次函数的零点是-1和3,当
时,
,且
。(1)求该二次函数的解析式;(2)求函数
的最大值。
若全集,且
,
,求:A∩B;A∪B
已知椭圆右焦点为
,M为椭圆的上顶点,O为坐标原点,且
是等腰直角三角形,(1)求椭圆的方程(2)过M分别作直线MA,MB,交椭圆于A,B两点,设两直线的斜率分别为
,且
,证明:直线AB过定点,并求定点的坐标。
(12分)某市中学生田径运动会总分获得冠、亚、季军的代表队人数如下表,大会组委会为使颁奖仪式有序进行,用分层抽样的方法从三个代表队中抽取16人在前排就座,其中亚军队有5人.(1)求季军队中男运动员的人数(2)从前排就座的亚军队5人(3男2女)中随机抽取2人上台领奖请列出所有的基本事件,并求亚军队中有女生上台领奖的概率;
性别名次 |
冠军 |
亚军 |
季军 |
男生 |
30 |
30 |
![]() |
女生 |
30 |
20 |
30 |
(12分)抛物线的顶点在坐标原点,焦点在轴的负半轴上,过点
作直线
与抛物线交于A,B两点,且满足
,
(1)求抛物线的方程
(2)当抛物线上的一动点P从A运动到B时,求面积的的最大值.