定义函数(
为定义域)图像上的点到坐标原点的距离为函数的
的模.若模存在最大值,则称之为函数
的长距;若模存在最小值,则称之为函数
的短距.
(1)分别判断函数与
是否存在长距与短距,若存在,请求出;
(2)求证:指数函数的短距小于1;
(3)对于任意是否存在实数
,使得函数
的短距不小于2且长距不大于4.若存在,请求出
的取值范围;不存在,则说明理由?
已知函数
(1)求函数的极值;
(2)设函数若函数
在
上恰有两个不同零点,求实数
的取值范围.
如图,直角△BCD所在的平面垂直于正△ABC所在的平面,PA⊥平面ABC,,
、F分别为DB、CB的中点,
(1)证明:AE⊥BC;
(2)求直线PF与平面BCD所成的角.
已知数列的前n项和为
(1)求的值,并猜想出数列
的通项公式
(2)设,请利用(I)的结论,求数列
的前15项和
已知向量与
共线,其中A是△ABC的内角.
(1)求角的大小;
(2)若BC=2,求△ABC面积的最大值,并判断S取得最大值时△ABC的形状.
(本小题满分14分)
(Ⅰ)若x=1为f(x)的极值点,求a的值;
(Ⅱ)若y= f(x)的图象在点(1,f(1))处的切线方程为x+y-3=0,求f(x)在区间[-2,4]上的最大值;
(Ⅲ)当a≠0时,若f(x)在区间(-1,1)上不单调,求a的取值范围.