已知△ABC的内角A、B、C所对的边分别为,且
, cosB=
.
(1) 若b=4,求sinA的值;
(2) 若△ABC的面积S△ABC=4,求b,c的值.
(本题满分为12分)
已知椭圆中心在原点,焦点在y轴上,焦距为4,离心率为.
(I)求椭圆方程;
(II)设椭圆在y轴的正半轴上的焦点为M,又点A和点B在椭圆上,且M分有向线段所成的比为2,求线段AB所在直线的方程.
(本题满分为12分)
在四棱锥中,
底面
,
,
,
,
,
是
的中点.
(I)证明:;
(II)证明:平面
;
(III)求二面角的余弦值.
(本小题满分12分)
从全校参加数学竞赛的学生的试卷中抽取一个样本,考察竞赛的成绩分布,将样本分成5组,绘成频率分布直方图,图中从左到右各小组的小长方形的高之比为1:3:6:4:2,最右边一组的频数是6,请结合直方图提供的信息,解答下列问题:
(1)样本的容量是多少?
(2)列出频率分布表;
(3)成绩落在哪个范围内的人数最多?并求出该小组的频数,频率;
(4)估计这次竞赛中,成绩高于60分的学生占总人数的百分比.
(本小题满分12分)
已知的面积
满足
,且
,
与
的夹角为
.
(1)求的取值范围;
(2)求函数的最大值及最小值.
(本小题满分12分)
设是实数,
,
(1)若函数为奇函数,求
的值;
(2)试用定义证明:对于任意,
在
上为单调递增函数;
(3)若函数为奇函数,且不等式
对任意
恒成立,求实数
的取值范围。