如图①,在□ABCD中,对角线AC⊥AB,BC=10,tan∠B=2.点E是BC边上的动点,过点E作EF⊥BC于点E,交折线AB-AD于点F,以EF为边在其右侧作正方形EFGH,使EH边落在射线BC上.点E从点B出发,以每秒1个单位的速度在BC边上运动,当点E与点C重合时,点E停止运动,设点E的运动时间为t()秒.
(1)□ABCD的面积为 ;当t= 秒时,点F与点A重合;
(2)点E在运动过程中,连接正方形EFGH的对角线EG,得△EHG,设△EHG与△ABC的重叠部分面积为S,请直接写出S与t的函数关系式以及对应的自变量t的取值范围;
(3)作点B关于点A的对称点Bˊ,连接CBˊ交AD边于点M(如图②),当点F在AD边上时,EF与对角线AC交于点N,连接MN得△MNC.是否存在时间t,使△MNC为等腰三角形?若存在,请求出使△MNC为等腰三角形的时间t;若不存在,请说明理由.
已知a、b是方程的两个实数根,求:
的值.
如图,在建立了平面直角坐标系的正方形网格中,A(2,2),B(1,0),C(3,1)
(1)画出ΔABC关于x轴对称的ΔA1B1C1.
(2)画出将ΔABC绕点B逆时针旋转900,所得的ΔA2B2C2.
(3)直接写出A2点的坐标.
解方程:
某商店经营一批进价每件为2元的小商品,在市场营销的过程中发现:如果该商品按每件最低价3元销售,日销售量为18件,如果单价每提高1元,日销售量就减少2件.设销售单价为x(元),日销售量为y(件).
(1)写出日销售量y(件)与销售单价x(元)之间的函数关系式;
(2)设日销售的毛利润(毛利润=销售总额-总进价)为P(元),求出毛利润P(元)与销售单价x(元)之间的函数关系式;
(3)在下图所示的坐标系中画出P关于x的函数图象的草图,并标出顶点的坐标;
(4)观察图象,说出当销售单价为多少元时,日销售的毛利润最高?是多少?
如图,梯形ABCD中,AB∥CD,且AB=2CD,E,F分别是AB,BC的中点。EF与BD相交于点M.
(1)求证:△EDM∽△FBM;
(2)若DB=9,求BM.