如图①,在□ABCD中,对角线AC⊥AB,BC=10,tan∠B=2.点E是BC边上的动点,过点E作EF⊥BC于点E,交折线AB-AD于点F,以EF为边在其右侧作正方形EFGH,使EH边落在射线BC上.点E从点B出发,以每秒1个单位的速度在BC边上运动,当点E与点C重合时,点E停止运动,设点E的运动时间为t()秒.
(1)□ABCD的面积为 ;当t= 秒时,点F与点A重合;
(2)点E在运动过程中,连接正方形EFGH的对角线EG,得△EHG,设△EHG与△ABC的重叠部分面积为S,请直接写出S与t的函数关系式以及对应的自变量t的取值范围;
(3)作点B关于点A的对称点Bˊ,连接CBˊ交AD边于点M(如图②),当点F在AD边上时,EF与对角线AC交于点N,连接MN得△MNC.是否存在时间t,使△MNC为等腰三角形?若存在,请求出使△MNC为等腰三角形的时间t;若不存在,请说明理由.
(本题8分)因式分解:
(1)
(2)
(本题8分)计算:
(1)
(2)
(本题8分)计算:
(1)
(2)
(本题12分)如图,点B(2,2)在双曲线(x>0)上,点C在双曲线
(x<0)上,点A是x轴上一动点,连接BC、AC、AB.
(1)求k的值;
(2)如图1,当BC∥x轴时,△ABC的面积;
(3)如图2,当点A运动到x轴正半轴时,若△ABC是等腰直角三角形,∠BAC=90°,求点A的坐标.
(本题12分)如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A沿边AB向点B以1cm/s的速度移动;同时,点Q从点B沿边BC向点C以2cm/s的速度移动,设运动的时间为t s(0<t<6),试尝试探究下列问题:
(1)当t为何值时,△PBQ的面积等于8cm?
(2)当t为何值时,△PBQ的面积最大,并求出这个最大面积;
(3)当t为何值时,△PDQ是等腰三角形?写出探索过程.