已知函数 (
).
(1)若,求函数
的极值;
(2)设.
① 当时,对任意
,都有
成立,求
的最大值;
② 设的导函数.若存在
,使
成立,求
的取值范围.
如图:三棱锥P-ABC中,PA^底面ABC,若底面ABC是边长为2的正三角形,且PB与底面ABC所成的角为.若
是
的中点,求:
(1)三棱锥P-ABC的体积;
(2)异面直线PM与AC所成角的大小(结果用反三角函数值表示).
已知数列的前
项和
,则其通项公式为
设函数,其中
.
(1)当时,求不等式
的解集;
(2)若不等式的解集为
,求a的值.
已知函数
(1)若在区间[1,+∞)上是增函数,求实数a的取值范围;
(2)若x=-是
的极值点,求
在[1,a]上的最大值;
(3)在(2)的条件下,是否存在实数b,使得函数=bx的图象与函数
的图象恰有3个交点,若存在,请求出实数b的取值范围;若不存在,试说明理由.
已知数列{an}满足a1=1,an>0,Sn是数列{an}的前n项和,对任意的
n∈N*,有2Sn=2an2+an-1.
(1)求数列{an}的通项公式;
(2)记,求数列{bn}的前n项和Tn.