游客
题文

已知:△ABD和△CBD关于直线BD对称(点A的对称点是点C),点E、F分别是线段BC和线段BD上的点,且点F在线段EC的垂直平分线上,连接AF、AE,AE交BD于点G.
(1)如图l,求证:∠EAF=∠ABD;
(2)如图2,当AB=AD时,M是线段AG上一点,连接BM、ED、MF,MF的延长线交ED于点N,∠MBF=∠BAF,AF=AD,请你判断线段FM和FN之间的数量关系,并证明你的判断是正确的.

科目 数学   题型 解答题   难度 困难
知识点: 相似多边形的性质
登录免费查看答案和解析
相关试题

解方程:

已知抛物线的顶点是C (0,a) (a>0,a为常数),并经过点(2a,2a),点D(0,2a)为一定点.
(1)求含有常数a的抛物线的解析式;
(2)设点P是抛物线任意一点,过PPHx轴,垂足是H,求证:PD = PH
(3)设过原点O的直线l与抛物线在第一象限相交于AB两点,若DA=2DB,且SABD = ,求a的值.

已知:在△ABC中,以AC边为直径的⊙OBC于点D,在劣弧上取一点E使∠EBC = ∠DEC,延长BE依次交ACG,交⊙OH.
(1)求证:ACBH
(2)若∠ABC= 45°,⊙O的直径等于10,BD =8,求CE的长.

如图,飞机沿水平方向(AB两点所在直线)飞行,前方有一座高山,为了避免飞机飞行过低,就必须测量山顶M到飞行路线AB的距离MN.飞机能够测量的数据有俯角和飞行的距离(因安全因素,飞机不能飞到山顶的正上方N处才测飞行距离),请设计一个距离MN的方案,要求:
(1)指出需要测量的数据(用字母表示,并在图中标出);
(2)用测出的数据写出求距离MN的步骤.

如图,一次函数的图象与反比例函数y1= ( x<0)的图象相交于A点,与y轴、x轴分别相交于BC两点,且C(2,0).当x<–1时,一次函数值大于反比例函数的值,当x>–1时,一次函数值小于反比例函数值.
(1)求一次函数的解析式;
(2)设函数y2= (x>0)的图象与y1= (x<0)的图象关于y轴对称.在y2= (x>0)的图象上取一点PP点的横坐标大于2),过PPQx轴,垂足是Q,若四边形BCQP的面积等于2,求P点的坐标.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号