已知椭圆C:(
)的离心率为
,点(1,
)在椭圆C上.
(1)求椭圆C的方程;
(2)若椭圆C的两条切线交于点M(4,),其中
,切点分别是A、B,试利用结论:在椭圆
上的点(
)处的椭圆切线方程是
,证明直线AB恒过椭圆的右焦点
;
(3)试探究的值是否恒为常数,若是,求出此常数;若不是,请说明理由.
设椭圆E:=1(
)过点M(2,
), N(
,1),
为坐标原点
(I)求椭圆E的方程;
(II)是否存在以原点为圆心的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程;若不存在,说明理由。
已知点P(0,5)及圆C:x2+y2+4x-12y+24=0
(I)若直线l过点P且被圆C截得的线段长为4,求l的方程;
(II)求过P点的圆C的弦的中点D的轨迹方程
在三棱柱ABC-A1B1C1中,AB=BC=CA=AA1=2,侧棱AA1⊥面ABC,D、E分别是棱A1B1、AA1的中点,点F在棱AB上,且
(I)求证:EF∥平面BDC1;
(II)求二面角E-BC1-D的余弦值
已知函数,
(I)若,求函数
的最大值和最小值,并写出相应的x的值;
(II)设的内角
、
、
的对边分别为
、
、
,满足
,
且
,求
、
的值
已知:等差数列{an}中,a3+a4=15,a2a5=54,公差d<0.
(I)求数列{an}的通项公式an;
(II)求数列的前n项和Sn的最大值及相应的n的值.