下表是某市从3月份中随机抽取的天空气质量指数(
)和“
”(直径小于等于
微米的颗粒物)
小时平均浓度的数据,空气质量指数(
)小于
表示空气质量优良.
日期编号 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
空气质量指数(![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
“![]() ![]() ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
(1)根据上表数据,估计该市当月某日空气质量优良的概率;
(2)在上表数据中,在表示空气质量优良的日期中,随机抽取两个对其当天的数据作进一步的分析,设事件为“抽取的两个日期中,当天‘
’的
小时平均浓度不超过
”,求事件
发生的概率;
(3)在上表数据中,在表示空气质量优良的日期中,随机抽取天,记
为“
”
小时平均浓度不超过
的天数,求
的分布列和数学期望.
(本小题满分14分)
如图,2015年春节,摄影爱好者在某公园
处,发现正前方
处有一立柱,测得立柱顶端
的仰角和立柱底部
的俯角均为
,已知
的身高约为
米(将眼睛距地面的距离按
米处理)
(1)求摄影者到立柱的水平距离和立柱的高度;
(2)立柱的顶端有一长2米的彩杆绕中点
在
与立柱所在的平面内旋转.摄影者有一视角范围为
的镜头,在彩杆转动的任意时刻,摄影者是否都可以将彩杆全部摄入画面?说明理由.
(本小题满分14分)
在正三棱柱中,点
是
的中点,
.
(1)求证:∥平面
;
(2)试在棱上找一点
,使
.
(本小题满分14分)
设△ABC三个内角A、B、C所对的边分别为a,b,c. 已知C=,acosA=bcosB.
(1)求角A的大小;
(2)如图,在△ABC的外角∠ACD内取一点P,使得PC=2.过点P分别作直线CA、CD的垂线PM、PN,垂足分别是M、N.设∠PCA=α,求PM+PN的最大值及此时α的取值.
已知等比数列中,各项都是正数,且
成等差数列,则
等于.
(本小题满分12分)如图,设为抛物线
的焦点,
是抛物线上一定点,其
坐为,
为线段
的垂直平分线上一点,且点
到抛物线的准线
的距离为
.
(Ⅰ)求抛物线的方程;(Ⅱ)过点P任作两条斜率均存在的直线PA、PB,分别与抛物线交于点A、B,如图示,若直线AB的斜率为定值,求证:直线PA、PB的倾斜角互补.