已知向量=
,
=
,
=
(1)若,求向量
、
的夹角
(2)当时,求函数
的最大值
已知函数满足
,
且
在
上恒成立.
(1)求的值;
(2)若,解不等式
;
(3)是否存在实数,使函数
在区间
上有最小值
?若存在,请求出实数
的值;若不存在,请说明理由.
已知点、
,若动点
满足
.
(1)求动点的轨迹曲线
的方程;
(2)在曲线上求一点
,使点
到直线:
的距离最小.
数列的各项均为正数,
为其前
项和,对于任意的
,总有
成等差数列.
(1)求;
(2)求数列的通项公式;
(3)设数列的前
项和为
,且
,求证:对任意正整数
,总有
在边长为的正方形
中,
分别为
的中点,
分别为
的中点,现沿
折叠,使
三点重合,重合后的点记为
,构成一个三棱锥.
(1)请判断与平面
的位置关系,并给出证明;
(2)证明平面
;
(3)求四棱锥的体积.