游客
题文

如图1,抛物线y=-x2+bx+c的顶点为Q,与x轴交于A(-1,0)、B(5,0)两点,与y轴交于点C.
(1)求抛物线的解析式及其顶点Q的坐标;
(2)在该抛物线的对称轴上求一点P,使得△PAC的周长最小,请在图中画出点P的位置,并求点P的坐标;
(3)如图2,若点D是第一象限抛物线上的一个动点,过D作DE⊥x轴,垂足为E.
①有一个同学说:“在第一象限抛物线上的所有点中,抛物线的顶点Q与x轴相距最远,所以当点D运动至点Q时,折线D-E-O的长度最长”,这个同学的说法正确吗?请说明理由.
②若DE与直线BC交于点F.试探究:四边形DCEB能否为平行四边形?若能,请直接写出点D的坐标;若不能,请简要说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

阅读材料:
小强遇到这样一个问题:已知正方形ABCD的边长为a,求作另一个正方形EFGH,使它的四个顶点分别在已知正方形的四条边上,并且边长等于b.
小强的思考是:如图,假设正方形EFGH已作出,其边长为b,点E、F、G、H分别在AD、AB、BC、CD上,则正方形EFGH的中心就是正方形ABCD的中心O(对角线的交点).

∵正方形EFGH的边长为b,∴对角线EG=HF=b,
∴OE=OF=OG=OH=b,进而点E、F、G、H可作出.
解决问题:
(1)下列网格每个小正方形的边长都为1,请你在网格中作出一个正方形ABCD,使它的边长a=,要求A、B、C、D四个顶点都在小正方形的格点上.
(2)参考小强的思路,探究解决下列问题:作另一个正方形EFGH,使它的四个顶点分别在(1)中所做正方形ABCD的边上,并且边长b取得最小值.请你画出图形,并简要说明b取得最小值的理由,写出b的最小值.

已知直线y1=x+m与x轴、 y轴分别交于点A、B,与双曲线(x<0)分别交于点C、D,且C点的坐标为(-1,2).

(1)分别求出直线AB及双曲线的解析式;
(2)求出点D的坐标;
(3)在坐标轴上找一点M,使得以M、C、D为顶点的三角形是直角三角形,请直接写出M点坐标.

某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本
逐年增长.已知该养殖户第1年的可变成本为2.6万元.设可变成本平均每年增长的百分率为x.
(1)用含x的代数式表示第3年的可变成本为_______万元;
(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率x.

如图,在△ABC中,D,E分别是AB,AC的中点,过点E作EF//AB,交BC于点F.

(1)求证:四边形DBFE是平行四边形;
(2)当△ABC满足什么条件时,四边形DBFE是菱形?为什么?

解方程:
(1);(2);(3)x2-5x-6=0.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号