如图,椭圆的中心为原点O,离心率e=22,一条准线的方程为x=22
(Ⅰ)求该椭圆的标准方程. (Ⅱ)设动点P满足OP⇀=OM⇀+2ON⇀,其中M,N是椭圆上的点.直线OM与ON的斜率之积为-0.5.问:是否存在两个定点F1,F2,使得PF1+PF2为定值.若存在,求F1,F2的坐标;若不存在,说明理由.
如图,在四棱锥中,平面平面为上一点,四边形为矩形, (1)若, 且平面求的值; (2)求证:平面
已知数列的前项和为,且满足 (1)求数列的通项公式 (2)设数列的前项和为,求证:
在中,角角的对边分别为且满足 (1)求角的大小; (2)若的面积为,求的值.
选修不等式讲 已知函数 (1)当时,求函数的定义域; (2)若对任意的,都有成立,求实数的取值范围.
选修坐标系与参数方程 已知直线(为参数)经过椭圆(为参数)的左焦点 (1)求的值; (2)设直线与椭圆交于、两点,求的最大值和最小值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号