在某次测验中,有6位同学的平均成绩为75分.用表示编号为(=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:
编号 | 1 |
2 |
3 |
4 |
5 |
成绩 |
70 |
76 |
72 |
70 |
72 |
(1)求第6位同学的成绩,及这6位同学成绩的标准差;
(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.
如图,在平面直角坐标系xOy中,平行于轴且过点
(3,2)的入射光线
被直线
反射.反射光线
交
轴于
点,圆
过点
且与
都相切.
(1)求所在直线的方程和圆
的方程;
(2)设分别是直线
和圆
上的动点,求
的最小值及此时点
的坐标.
如图,在正三棱柱中,
分别为
中点.
(1)求证:平面
;
(2)求证:平面平面
.
如图是某直三棱柱被削去上底后的直观图与三视图的侧视图、俯视图,在直观图中,M是BD的中点,,侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.
(Ⅰ)求出该几何体的体积;
(Ⅱ)试问在边上是否存在点N,使
平面
? 若存在,确定点N的位置(不需证明);若不存在,请说明理由.
已知命题和命题
,若
是
的必要不充分条件,求实数
的取值范围.
如图所示,直线与双曲线
及其渐近线依次交于
、
、
、
四点,记
.
(Ⅰ)若直线的方程为
,求
;
(Ⅱ)请根据(Ⅰ)的计算结果猜想的关系,并证明之.