(本小题满分12分)一工厂生产甲、乙、丙三种样式的杯子,每种样式均有和
两种型号,某天的产量如右表(单位:个):按样式分层抽样的方法在这个月生产的杯子中抽取
个,其中有甲样式杯子
个.
型号 |
甲样式 |
乙样式 |
丙样式 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
(1)求的值;
(2)用分层抽样的方法在甲样式杯子中抽取一个容量为的样本,从这个样本中任取
个杯子,求至少有
个
杯子的概率.
(本小题满分12分)已知某几何体的直观图和三视图如下图所示, 其正视图为矩形,左视图为等腰直角三角形,俯视图为直角梯形.
(Ⅰ)证明:⊥平面
;
(Ⅱ)求平面与平面
所成角的余弦值;
第七届城市运动会2011年10月16日在江西南昌举行,为了搞好接待工作,运动会组委会在某大学招募了12名男志愿者和18名女志愿者。将这30名志愿者的身高编成如右所示的茎叶图(单位:cm):若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“ 非高个子”,且只有“女高个子”才担任“礼仪小姐”。(I)如果用分层抽样的方法从“高个子”中和“非高个子”中提取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?(II)若从所有“高个子”中选3名志愿者,用表示所选志愿者中能担任“礼仪小姐”的人数,试写出
的分布列,并求
的数学期望。
△ABC中,角A、B、C对边分别是a、b、c,满足.
(Ⅰ)求角A的大小;
(Ⅱ)求的最大值,并求取得最大值时角B、C的大小.
)设点C为曲线y=(x>0)上任一点,以点C为圆心的圆与x轴交于点E、A,与y轴交于点E、B.
(1)证明:多边形EACB的面积是定值,并求这个定值;
(2)设直线y=-2x+4与圆C交于点M,N,若|EM|=|EN|,求圆C的方程.
为了研究某高校大学新生学生的视力情况,随机地抽查了该校100名进校学生的视力情况,得到频率分布直方图,如图.已知前4组的频数从左到右依次是等比数列的前四项,后6组的频数从左到右依次是等差数列
的前六项.(Ⅰ)求等比数列
的通项公式;
(Ⅱ)求等差数列的通项公式;(Ⅲ)若规定视力低于5.0的学生属于近视学生,试估计该校新生的近视率
的大小.