如图菱形ABEF所在平面与直角梯形ABCD所在平面互相垂直,AB=2AD=2CD=4,,点H、G分别是线段EF、BC的中点.
(1)求证:平面AHC平面
;(2)点M在直线EF上,且
平面
,求平面ACH与平面ACM所成锐角的余弦值.
20.已知函数
(1)求函数的极值;
(2)设函数若函数
在
上恰有两个不同零点,求实数
的取值范围.
19.如图,在四棱锥中,
∥
,
,
,
⊥
,
⊥
,
为
的中点.求证:
(1)∥平面
;
(2)⊥平面
.
函数,其中
。
(1)若函数在其定义域内是单调函数,求
的取值范围;
(2)若对定义域内的任意
,都有
,求
的值;
(3)设,
。当
时,若存在
,
使得,求实数
的取值范围。
设椭圆:
,直线
过椭圆左焦点
且不与
轴重合,
与椭圆交于
,当
与
轴垂直时,
,
为椭圆的右焦点,
为椭圆
上任意一点,若
面积的最大值为
。
(1)求椭圆的方程;
(2)直线绕着
旋转,与圆
:
交于
两点,若
,求
的面积
的取值范围。
如图一,平面四边形ABCD关于直线AC对称,,
,
。
把沿BD折起(如图二),使二面角A-BD-C的余弦值等于
。对于图二,
(1)求的长,并证明:
平面
;
(2)求直线与平面
所成角的正弦值。