设椭圆:
,直线
过椭圆左焦点
且不与
轴重合,
与椭圆交于
,当
与
轴垂直时,
,
为椭圆的右焦点,
为椭圆
上任意一点,若
面积的最大值为
。
(1)求椭圆的方程;
(2)直线绕着
旋转,与圆
:
交于
两点,若
,求
的面积
的取值范围。
【改编】在正四棱柱中,已知底面
的边长为2,点P是
的中点,且
.
(1)求的长;
(2)求点到平面
的距离.
【原创】(1),已知:,且满足
,求
的最小值;
(2),已知:,且满足
,求
的最大值.
如图,正方形ABCD所在的平面与三角形CDE所在的平面交于CD,AE⊥平面CDE,且AB=2AE.
(1)求证:AB∥平面CDE;
(2)求证:平面ABCD⊥平面ADE.
光线从点A(2,3)射出,若镜面的位置在直线上,反射线经过 B(1,1),求入射光线和反射光线所在直线的方程,并求光线从A到B所走过的路线长
如图P、Q分别是A1B1、BB1的四等分点,M、N分别是D1C1、CC1的中点.沿M→N→Q→P截去一部分,截去的几何体是什么?剩下的几何体也是吗?