用总长为14.8米的钢条制成一个长方体容器的框架,如果所制的容器的底面的长比宽多0.5米,那么高为多少时容器的容器最大?并求出它的最大容积.
(Ⅰ)已知||=4,|
|=3,(2
-3
)·(2
+
)=61,求
与
的夹角θ;
(Ⅱ)设=(2,5),
=(3,1),
=(6,3),在
上是否存在点M,使
,若存在,求出点M的坐标,若不存在,请说明理由.
已知函数的定义域为
,值域为
.试求函数
(
)的最小正周期和最值.
已知椭圆的离心率为
,椭圆短轴的一个端点与两个焦点构成的三角形的面积为
。
(Ⅰ)求椭圆的方程;
(Ⅱ)已知动直线与椭圆
相交于
、
两点。
①若线段中点的横坐标为
,求斜率
的值;
②已知点,求证:
为定值
若是函数
的两个极值点。
(Ⅰ)若,求函数
的解析式;
(Ⅱ)若,求
的最大值。
如图,已知直四棱柱的底面是直角梯形,
,
,
,
分别是棱
,
上的动点,且
,
,
.
(Ⅰ)证明:无论点怎样运动,四边形
都为矩形;
(Ⅱ)当时,求几何体
的体积。