某电视台“挑战60秒”活动规定上台演唱:
(I)连续达到60秒可转动转盘(转盘为八等分圆盘)一次进行抽奖,达到90秒可转两次,达到120秒可转三次(奖金累加).
(2)转盘指针落在I、II、III区依次为一等奖(500元)、二等奖(200元)、三等奖(100元),落在其它区域不奖励.
(3)演唱时间从开始到三位评委中至少1人呜啰为止,现有一演唱者演唱时间为100秒.
①求此人中一等奖的概率;
②设此人所得奖金为,求
的分布列及数学期望
.
记关于的不等式
的解集
,不等式
的解集为
.
(1)若,求集合
;
(2)若且
,求
的取值范围.
已知函数,
为实数)有极值,且在
处的切线与直线
平行.
(Ⅰ)求实数a的取值范围;
(Ⅱ)是否存在实数a,使得函数的极小值为1,若存在,求出实数a的值;若不存在,请说明理由;
(Ⅲ)设函数试判断函数
在
上的符号,并证明:
(
).
已知函数.
(Ⅰ)若函数在
上是增函数,求正实数
的取值范围;
(Ⅱ)若,
且
,设
,求函数
在
上的最大值和最小值.
定义在区间上的函数
的图象关于直线
对称,当
时函数
图象如图所示.
(Ⅰ)求函数在
的表达式;
(Ⅱ)求方程的解;
(Ⅲ)是否存在常数的值,使得
在
上恒成立;若存在,求出
的取值范围;若不存在,请说明理由.
时下,网校教学越来越受到广大学生的喜爱,它已经成为学生们课外学习的一种趋势,假设某网校的套题每日的销售量(单位:千套)与销售价格
(单位:元/套)满足的关系式
,其中
,
为常数.已知销售价格为4元/套时,每日可售出套题21千套.
(1)求的值;
(2)假设网校的员工工资,办公等所有开销折合为每套题2元(只考虑销售出的套数),试确定销售价格的值,使网校每日销售套题所获得的利润最大.(保留1位小数点)