给定数列
(1)判断是否为有理数,证明你的结论;
(2)是否存在常数.使
对
都成立? 若存在,找出
的一个值, 并加以证明; 若不存在,说明理由.
已知函数,
R.
(1)求的最小值,并求出相应的
值的集合;
(2)求的单调递减区间.
已知函数,
.
(1)若曲线在点
处的切线平行于
轴,求
的值;
(2)当时,若对
,
恒成立,求实数
的取值范围;
(3)设,在(1)的条件下,证明当
时,对任意两个不相等的正数
、
,有
.
已知正项数列满足:
,数列
的前
项和为
,且满足
,
.
(1)求数列和
的通项公式;
(2)设,数列
的前
项和为
,求证:
.
已知曲线的方程为:
(
,
为常数).
(1)判断曲线的形状;
(2)设曲线分别与
轴、
轴交于点
、
(
、
不同于原点
),试判断
的面积
是否为定值?并证明你的判断;
(3)设直线与曲线
交于不同的两点
、
,且
,求曲线
的方程.
如图,四棱锥的底面是正方形,侧棱
底面
,过
作
垂直
交
于
点,作
垂直
交
于
点,平面
交
于
点,且
,
.
(1)试证明不论点在何位置,都有
;
(2)求的最小值;
(3)设平面与平面
的交线为
,求证:
.