游客
题文

在平面直角坐标系中,已知椭圆的焦点在轴上,离心率为,且经过点
(1)求椭圆的标准方程;
(2) 以椭圆的长轴为直径作圆,设为圆上不在坐标轴上的任意一点,轴上一点,过圆心作直线的垂线交椭圆右准线于点.问:直线能否与圆总相切,如果能,求出点的坐标;如果不能,说明理由.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

函数的图象记为E.过点作曲线E的切线,这样的切线有且仅有两条,求的值.

为了降低能源损耗,某体育馆的外墙需要建造隔热层.体育馆要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度(单位:cm)满足关系:(为常数),若不建隔热层,每年能源消耗费用为8万元.设为隔热层建造费用与20年的能源消耗费用之和.
(1)求的值及的表达式;
(2)隔热层修建多厚时,总费用达到最小?并求出最小值.

证明:

已知实数满足,证明:

如图1,在直角梯形中,,,.将沿折起,使平面平面,得到几何体,如图2所示.
(1)求证:⊥平面;(2)求几何体的体积.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号