某班主任对全班50名学生学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:
| |
积极参加班级工作 |
不太主动参加班级工作 |
合计 |
| 学习积极性高 |
18 |
7 |
25 |
| 学习积极性一般 |
6 |
19 |
25 |
| 合计 |
24 |
26 |
50 |
(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?
(2)试运用独立性检验的思想方法点拨:学生的学习积极性与对待班级工作的态度是否有关系?并说明理由.(参考下表)
| P(K2≥k) |
0.50 |
0.40 |
0.25 |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
| k |
0.455 |
0.708 |
1.323 |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(本小题满分14分)
已知f(x)=x2+bx+c为偶函数,曲线y=f(x)过点(2,5),g(x)=(x+a)f(x).
(1)求f(x)的解析式;
(2)若曲线y=g(x)有斜率为0的切线,求实数a的取值范围;
(3)若当x=1时,函数y=g(x)取得极值,确定y=g(x)的单调区间.
(本小题满分13分)
已知双曲线C:
=1(a>0,b>0)的离心率为
焦点到渐近线的距离为
(1)求双曲线C的方程;
(2)已知直线x-y+m
=0与双曲线C交于不同的两点A,B,且线段AB的中点在抛物
线y2="4" x上,求m的值.
(本小题满分12分)
已知函数f(x)=-x3+x2+ax+b(a,b∈R).
(1)若a=3,试确定函数f(x)的单调区间;
(2)若函数f(x)在其图象上任意一点(x0,f(x0))处切线的斜率都小于2a2,求a的取值范围.
(本小题满分12分)已知命题p:函数f(x)=loga|x|在(0,+∞)上单调递增,命题q:关于x的方程x2+2x+loga
=0的解集只有一个子集,p∨q为真,(¬p)∨(¬q)也为真,求实数a的取值范围.
(本小题满分12分)
已知f(x)、g(x)分别为奇函数、偶函数,且f(x)+g(x)=2x+2x,求f(x)、g(x)的解析式.