为喜迎马年新春佳节,某商场在正月初六进行抽奖促销活动,当日在该店消费满500元的顾客可参加抽奖.抽奖箱中有大小完全相同的4个小球,分别标有 “马”“上”“有”“钱”.顾客从中任意取出1个球,记下上面的字后放回箱中,再从中任取1个球,重复以上操作,最多取4次,并规定若取出“钱”字球,则停止取球.获奖规则如下:依次取到标有“马”“上”“有”“钱”字的球为一等奖;不分顺序取到标有“马”“上”“有”“钱”字的球,为二等奖;取到的4个球中有标有“马”“上”“有”三个字的球为三等奖.
(1)求分别获得一、二、三等奖的概率;
(2)设摸球次数为,求
的分布列和数学期望.
(本小题满分14分)
如图,已知,
.
(1)试用向量来表示向量
;
(2)若向量,
的终点在一条直线上,
求实数的值;
(3)设
,当
、
、
、
四点共圆时, 求
的值.
![]() |
(本小题满分13分)
从某校高一年级参加期末考试的学生中抽出名学生,其数学成绩(均为整数)的频率分布直方图如图所示.
(1)根据频率分布直方图估计这次考试该年级的数学平均分;
(2) 已知在[90,100]内的学生的数学成绩都不相同,且都在95分以上(不含95分),现用简单随机抽样方法,从这
个数中任取
个数,求这
个数恰好是两名学生的数学成绩的概率.
![]() |
(本小题满分13分)
已知向量满足
,其中
.
(1)求和
的值;
(2)若,求
的值.
(本小题满分13分)
已知函数.
(1)求的单调递增区间;
(2)函数的图象经过怎样的平移可使其对应的函数成为偶函数? 请写出一种正确的平移方法,并说明理由.
(本小题满分13分)
某零售店近五个月的销售额和利润额资料如下表:
商店名称 |
A |
B |
C |
D |
E E |
销售额![]() |
3 |
5 |
6 |
7 |
9 9 |
利润额![]() |
2 |
3 |
3 |
4 |
5 |
(1)画出散点图.观察散点图,说明两个变量有怎样的相关关系;
(2)用最小二乘法计算利润额关于销售额
的回归直线方程;
(3)当销售额为4(千万元)时,利用(2)的结论估计该零售店的利润额(百万元).