如图,在棱长为2的正方体 A B C D - A 1 B 1 C 1 D 1 中, E , F , M , N 分别是棱 A B , A D , A 1 B 1 , A 1 D 1 的中点,点 P , Q 分别在棱 D D 1 , B B 1 上移动,且 D P = B Q = λ ( 0 < λ < 2 ) .
(1)当 λ = 1 时,证明:直线 B C 1 / / 平面 E F P Q ;
(2)是否存在 λ ,使平面 E F P Q 与面 P Q M N 所成的二面角为直二面角?若存在,求出 λ 的值;若不存在,说明理由.
在数列中,,若函数在点处切线过点() (1)求证:数列为等比数列; 求数列的通项公式和前n项和公式.
若向量,其中,设函数,其周期为,且是它的一条对称轴。 (1)求的解析式; (2)当时,不等式恒成立,求实数a的取值范围。
已知函数. (1)求函数的单调递增区间; (2)设的内角的对边分别为a、b、c,若c=,求a,b的值
已知函数 (1)确定在(0,+)上的单调性; (2)设在(0,2)上有极值,求a的取值范围
已知数列{}的前n项和为,数列的前n项和为,为等差数列且各项均为正数, (1)求数列{}的通项公式; (2)若成等比数列,求
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号