一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示:
将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.
(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另一天的日销售量低于50个的概率;
(2)用
表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望
及方差
.
设f(x)=ax2+bx+c(a>b>c),f(1)=0,g(x)=ax+b.
(1)求证:函数y=f(x)与y=g(x)的图象有两个交点;
(2)设f(x)与g(x)的图象交点A、B在x轴上的射影为A1、B1,求|A1B1|的取值范围;
已知函数在
处取得极值.
(1)讨论和
是函数
的极大值还是极小值;
(2)过点作曲线
的切线,求此切线方程.
|
已知函数(a<0,
,设关于x的方程
的两根为
,
的两实根为
、
.
设函数
(1)解不等式f(x)<0;
(2)试推断函数f(x)是否存在最小值?若存在,求出其最小值;若不存在,说明理由.
1.已知数列,其中
,且数列
为等比数列,求常数
.
2.设是公比不相等的两个等比数列,
,证明数列
不是等比数列.