一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示:
将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.
(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另一天的日销售量低于50个的概率;
(2)用
表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望
及方差
.
求经过三点A(1,-1),B(1,4),C(4,-2)的圆的方程,并判断与圆的位置关系。
的三外顶点分别为
.
(1)求边AC所在的直线方程;
(2)求AC边上的中线BD所在的直线的方程。
求倾斜角是45°,并且与原点的距离是5的直线的方程.
(14分)已知函数.
(Ⅰ)求函数的最小值;
(Ⅱ)求证:;
(Ⅲ)对于函数与
定义域上的任意实数
,若存在常数
,使得
和
都成立,则称直线
为函数
与
的“分界线”.设函数
,
,
与
是否存在“分界线”?若存在,求出
的值;若不存在,请说明理由.
设函数对任意
,都有
,当
时,
(1)求证:是奇函数;
(2)试问:在时
,
是否有最大值?如果有,求出最大值,如果没有,说明理由.
(3)解关于x的不等式