游客
题文

本题共有3个小题,第1小题满分5分,第2小题满分8分,第3小题满分5分.
定义:由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”.如果两个椭圆的“特征三角形”是相似的,则称这两个椭圆是“相似椭圆”,并将三角形的相似比称为椭圆的相似比.已知椭圆
(1)若椭圆,判断是否相似?如果相似,求出的相似比;如果不相似,请说明理由;
(2)写出与椭圆相似且焦点在轴上、短半轴长为的椭圆的标准方程;若在椭圆上存在两点关于直线对称,求实数的取值范围;
(3)如图:直线与两个“相似椭圆”分别交于点和点,试在椭圆和椭圆上分别作出点和点(非椭圆顶点),使组成以为相似比的两个相似三角形,写出具体作法.(不必证明)

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

已知a、b、c∈(0,1),求证:(1-a)b,(1-b)c,(1-c)a不能同时大于.

已知a,b,c为互不相等的非负数.
求证:a2+b2+c2(++).

若x,y都是正实数,且x+y>2,
求证:<2与<2中至少有一个成立.

计算:
(1); (2);
(3)+; (4) .

函数f(x)=ax3-2bx2+cx+4d (a,b,c,d∈R)的图象关于原点对称,且x=1时,f(x)取极小值为-.
(1)求a,b,c,d的值;
(2)证明:当x∈[-1,1]时,图象上不存在两点使得过此两点处的切线互相垂直;
(3)若x1,x2∈[-1,1]时,求证:|f(x1)-f(x2)|≤.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号